Strategies for Adding Adaptive Learning Mechanisms to Rule - Based Diagnostic Expert Systems
نویسنده
چکیده
Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to incrementally evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next, basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.
منابع مشابه
Foundations of Learning Classifier Systems: An Introduction
[Learning] Classifier systems are a kind of rule-based system with general mechanisms for processing rules in parallel, for adaptive generation of new rules, and for testing the effectiveness of existing rules. These mechanisms make possible performance and learning without the " brittleness " characteristic of most expert systems in AI.
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملAn Experimental Adaptive Expert System
This paper explores an approach to building an adaptive expert system in an environment of human-computer collaboration. Components of an adaptive system are identified, with an emphasis on the mechanisms that enable adaptive behavior to occur. Knowledge representation in a rule-based, object-orientated expert system is described through the establishment of appropriate relationships utilizing ...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملTimetabling Using Adaptive Fuzzy Petri Nets
A Petri net is an abstract formal model of the behavior of a system and information flow. The properties, concepts, and techniques of Petri net are so as to present it as a simple and strong method for describing and analyzing information flow and systems control. Fuzzy Petri Net (FPN) is an appropriate powerful model to emulate knowledge base systems using fuzzy rules. Yet, FPN model does not ...
متن کامل